African swine fever virus inhibits induction of the stress-induced proapoptotic transcription factor CHOP/GADD153.

نویسندگان

  • Christopher L Netherton
  • James C Parsley
  • Thomas Wileman
چکیده

Stress signaling from mitochondria and the endoplasmic reticulum (ER) leads to the induction of the proapoptotic transcription factor CHOP/GADD153. Many viruses use the ER as a site of replication and/or envelopment, and this activity can lead to the activation of ER stress and apoptosis. African swine fever virus (ASFV) is assembled on the cytoplasmic face of the ER and ultimately enveloped by ER membrane cisternae. The virus also recruits mitochondria to sites of viral replication and induces the mitochondrial stress protein hsp60. Here we studied the effects of ASFV on the induction of CHOP/GADD153 in infected cells. Interestingly, unlike other ER-tropic viruses, ASFV did not activate CHOP and was able to inhibit the induction of CHOP/GADD153 by a number of exogenous stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHOP-dependent regulation of p21/waf1 during ER stress.

The transcription factor CHOP/GADD153 is induced during the unfolded protein response (UPR) and is associated to the induction of ER stress-related apoptosis. However, how the transition between the pro-survival and the pro-apoptotic role of ER stress is being orchestrated remains poorly understood. Here we show that tunicamycin, an antibiotic promoting ER stress, suppresses the expression of p...

متن کامل

Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response.

Gadd153, also known as chop, encodes a member of the CCAAT/enhancer-binding protein (C/EBP) transcription factor family and is transcriptionally activated by cellular stress signals. We recently demonstrated that arsenite treatment of rat pheochromocytoma PC12 cells results in the biphasic induction of Gadd153 mRNA expression, controlled in part through binding of C/EBPbeta and two uncharacteri...

متن کامل

Involvement of endoplasmic reticulum stress-mediated CHOP (GADD153) induction in the cytotoxicity of 2-aminophenoxazine-3-one in cancer cells.

In this study, 2-aminophenoxazine-3-one (Phx-3) exhibited a potent cell growth inhibitory effect with apoptotic features in a dose-dependent manner in various cancer cell lines tested. Comparison of the expression profiles of endoplasmic reticulum (ER) stress-related genes in U266 multiple myeloma cells after treatment with Phx-3 and the ER stress inducers tunicamycin (TNM) and thapsigargin (TP...

متن کامل

Urea-associated oxidative stress and Gadd153/CHOP induction.

Urea treatment (100-300 mM) increased expression of the oxidative stress-responsive transcription factor, Gadd153/CHOP, at the mRNA and protein levels (at ≥4 h) in renal medullary mIMCD3 cells in culture, whereas other solutes did not. Expression of the related protein, CCAAT/enhancer-binding protein (C/EBP-β), was not affected, nor was expression of the sensor of endoplasmic reticulum stress, ...

متن کامل

Pharmacological induction of cell surface GRP78 contributes to apoptosis in triple negative breast cancer cells

Breast cancer tumor with triple-negative receptors (estrogen, progesterone and Her 2, receptors) is the most aggressive and deadly subtype, with high rates of disease recurrence and poor survival. Here, we show that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 78 19  شماره 

صفحات  -

تاریخ انتشار 2004